Pedestrian Fall Event Detection in Complex Scenes Based on Attention-Guided Neural Network

Author:

Geng Peng1,Xie Hui1,Shi Houqin1,Chen Rui1ORCID,Tong Ying1

Affiliation:

1. School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, China

Abstract

To address automatic detection of pedestrian fall events and provide feedback in emergency situations, this paper proposes an attention-guided real-time and robust method for pedestrian detection in complex scenes. First, the YOLOv3 network is used to effectively detect pedestrians in the videos. Then, an improved DeepSort algorithm is used to track by detection. After tracking, the authors extract effective features from the tracked bounding box, use the output of the last convolutional layer, and introduce the attention weight factor into the tracking module for final fall event prediction. Finally, the authors use the sliding window for storing feature maps and SVM classifier to redetect fall events. The experimental results on the CityPersons dataset, Montreal fall dataset, and self-built dataset indicate that this approach has good performance in complex scenes. The pedestrian detection rate is 87.05%, the accuracy of fall event detection reaches 98.55%, and the delay is within 120 ms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3