Affiliation:
1. College of Geomatics and Geoformation, Guilin University of Technology, Guilin 541004, China
2. Ecological Spatiotemporal Big Data Perception Service Laboratory, Guilin 541004, China
3. Guilin Agricultural Science Research Center, Guilin 541004, China
Abstract
Multiple-object tracking (MOT) is a fundamental task in computer vision and is widely applied across various domains. However, its algorithms remain somewhat immature in practical applications. To address the challenges presented by complex scenarios featuring instances of missed detections, false alarms, and frequent target switching leading to tracking failures, we propose an approach to multi-object tracking utilizing KC-YOLO detection and an identity validity discrimination module. We have constructed the KC-YOLO detection model as the detector for the tracking task, optimized the selection of detection frames, and implemented adaptive feature refinement to effectively address issues such as incomplete pedestrian features caused by occlusion. Furthermore, we have introduced an identity validity discrimination module in the data association component of the tracker. This module leverages the occlusion ratio coefficient, denoted by “k”, to assess the validity of pedestrian identities in low-scoring detection frames following cascade matching. This approach not only enhances pedestrian tracking accuracy but also ensures the integrity of pedestrian identities. In experiments on the MOT16, MOT17, and MOT20 datasets, MOTA reached 75.9%, 78.5%, and 70.1%, and IDF1 reached 74.8%, 77.8%, and 72.4%. The experimental results demonstrate the superiority of the methodology. This research outcome has potential applications in security monitoring, including public safety and fire prevention, for tracking critical targets.
Funder
National Natural Science Foundation of China
Guilin Technology Application and Promotion Project
Guilin Key R&D Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献