Multi-Pedestrian Tracking Based on KC-YOLO Detection and Identity Validity Discrimination Module

Author:

Li Jingwen12,Wu Wei1ORCID,Zhang Dan3,Fan Dayong3,Jiang Jianwu12ORCID,Lu Yanling12,Gao Ertao12ORCID,Yue Tao12

Affiliation:

1. College of Geomatics and Geoformation, Guilin University of Technology, Guilin 541004, China

2. Ecological Spatiotemporal Big Data Perception Service Laboratory, Guilin 541004, China

3. Guilin Agricultural Science Research Center, Guilin 541004, China

Abstract

Multiple-object tracking (MOT) is a fundamental task in computer vision and is widely applied across various domains. However, its algorithms remain somewhat immature in practical applications. To address the challenges presented by complex scenarios featuring instances of missed detections, false alarms, and frequent target switching leading to tracking failures, we propose an approach to multi-object tracking utilizing KC-YOLO detection and an identity validity discrimination module. We have constructed the KC-YOLO detection model as the detector for the tracking task, optimized the selection of detection frames, and implemented adaptive feature refinement to effectively address issues such as incomplete pedestrian features caused by occlusion. Furthermore, we have introduced an identity validity discrimination module in the data association component of the tracker. This module leverages the occlusion ratio coefficient, denoted by “k”, to assess the validity of pedestrian identities in low-scoring detection frames following cascade matching. This approach not only enhances pedestrian tracking accuracy but also ensures the integrity of pedestrian identities. In experiments on the MOT16, MOT17, and MOT20 datasets, MOTA reached 75.9%, 78.5%, and 70.1%, and IDF1 reached 74.8%, 77.8%, and 72.4%. The experimental results demonstrate the superiority of the methodology. This research outcome has potential applications in security monitoring, including public safety and fire prevention, for tracking critical targets.

Funder

National Natural Science Foundation of China

Guilin Technology Application and Promotion Project

Guilin Key R&D Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3