Deep recurrent neural networks distributed on a Hadoop/Spark cluster for fall detection

Author:

Hamdi Monia,Bouhamed Heni,Badreddine Fady,Alkanhel Reem Ibrahim

Abstract

Falls detection approaches struggle with both Big Data scalability and upholding individual privacy, this research work proposed a novel approach for posture recognition followed by fall detection, taking advantage of the synergy between Random Forests and Uniform Local Binary Patterns (uLBP) histograms for an accurate and fast posture identification while respecting privacy. Additionally, it referred to deep recurrent neural networks distributed on a Hadoop and Spark platform for time series analysis in fall detection. This combination of methods allowed us to achieve acceptable real-time monitoring precision. This study, therefore addressed two objectives simultaneously: efficiency and scalability in posture recognition using Random Forests and uLBP, and fall detection relying on the recurrent neural network (RNN) for time series processing. The suggested solution is designed for home telemonitoring, where scalability and effective data management are supported through Hadoop/Spark. The integration of these technologies promotes reliable detection without any privacy violation, paving the way for a wider adoption of home monitoring systems for an increasing population of dependent individuals.

Publisher

Agora University of Oradea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3