Using AI-Based Classification Techniques to Process EEG Data Collected during the Visual Short-Term Memory Assessment

Author:

Antonijevic Milos1ORCID,Zivkovic Miodrag1,Arsic Sladjana2,Jevremovic Aleksandar1

Affiliation:

1. Informatics and Computing Department, Singidunum University, Belgrade, Serbia

2. Department Cupria, Academy of Educational Medical Professional Studies, Krusevac, Serbia

Abstract

Visual short-term memory (VSTM) is defined as the ability to remember a small amount of visual information, such as colors and shapes, during a short period of time. VSTM is a part of short-term memory, which can hold information up to 30 seconds. In this paper, we present the results of research where we classified the data gathered by using an electroencephalogram (EEG) during a VSTM experiment. The experiment was performed with 12 participants that were required to remember as many details as possible from the two images, displayed for 1 minute. The first assessment was done in an isolated environment, while the second assessment was done in front of the other participants, in order to increase the stress of the examinee. The classification of the EEG data was done by using four algorithms: Naive Bayes, support vector, KNN, and random forest. The results obtained show that AI-based classification could be successfully used in the proposed way, since we were able to correctly classify the order of the images presented 90.12% of the time and type of the displayed image 90.51% of the time.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3