Automatic Epileptic Seizure Detection Using PSO-Based Feature Selection and Multilevel Spectral Analysis for EEG Signals

Author:

Sun Qi1ORCID,Liu Yuanjian1ORCID,Li Shuangde1,Wang Chaodong23

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China

2. Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China

3. National Clinical Research Center for Geriatric Diseases, Beijing, China

Abstract

Automatic epileptic seizure detection technologies for clinical diagnosis mainly rely on electroencephalogram (EEG) recordings, which are immensely useful tools for epileptic location and identification. Currently, traditional seizure detection methods based only on single-view features have great limitations for the typical dynamic and nonlinear EEG signals. An objective of this paper is to investigate the effect of multiview feature selection and multilevel spectral analysis methods on the identification of the EEG signals for seizure detection. Here, multiview features are extracted from time domain, frequency domain, and information theory to collect adequate information of EEG signals. And a feature selection algorithm based on particle swarm optimization (PSO) is proposed for automatic seizure detection. Moreover, due to the different frequency components of the EEG signals, they are divided into four kinds of brain waves for multilevel spectral analysis. The effect of these four rhythm waves on seizure detection is compared. Three well-known classifiers are employed to classify EEG signals concerning seizure or nonseizure events. The result shows that the average accuracy, specificity, and sensitivity of classification with the CHB-MIT database are 98.14%, 98.64%, and 96.79%, respectively. The application of the PSO-based feature selection method for automatic seizure detection improves accuracy by 5.99% with the SVM classifier. Compared with the state-of-the-art methods, the proposed method has superior competence with high performance for automatic seizure detection. It is further shown that the feature selection method is an indispensable step in seizure detection. With PSO-based feature selection and multilevel spectral analysis, the θ wave in the frequency range of 4-7 Hz shows better performance in the identification of EEG signals and is more suitable for the proposed method. The PSO-based feature selection algorithm for automatic seizure detection can be a useful assistant tool for clinical diagnosis.

Funder

Research Innovation Program for College Graduates of Jiangsu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3