Computation of Heterojunction Parameters at Low Temperatures in Heterojunctions Comprised of n-Type β-FeSi2 Thin Films and p-Type Si(111) Substrates Grown by Radio Frequency Magnetron Sputtering

Author:

Sittimart Phongsaphak1ORCID,Nopparuchikun Adison1ORCID,Promros Nathaporn1ORCID

Affiliation:

1. Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

In this study, n-type β-FeSi2/p-type Si heterojunctions, inside which n-type β-FeSi2 films were epitaxially grown on p-type Si(111) substrates, were created using radio frequency magnetron sputtering at a substrate temperature of 560°C and Ar pressure of 2.66×10-1 Pa. The heterojunctions were measured for forward and reverse dark current density-voltage curves as a function of temperature ranging from 300 down to 20 K for computation of heterojunction parameters using the thermionic emission (TE) theory and Cheung’s and Norde’s methods. Computation using the TE theory showed that the values of ideality factor (n) were 1.71 at 300 K and 16.83 at 20 K, while the barrier height (ϕb) values were 0.59 eV at 300 K and 0.06 eV at 20 K. Both of the n and ϕb values computed using the TE theory were in agreement with those computed using Cheung’s and Norde’s methods. The values of series resistance (Rs) computed at 300 K and 20 K by Norde’s method were 10.93 Ω and 0.15 MΩ, respectively, which agreed with the Rs values found through computation by Cheung’s method. The dramatic increment of Rs value at low temperatures was likely attributable to the increment of n value at low temperatures.

Funder

Collaborative Research Program for Alumni Members

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3