Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy

Author:

El Orche Aimen1ORCID,Mamad Amine2,Elhamdaoui Omar2,Cheikh Amine3,El Karbane Miloud2,Bouatia Mustapha2ORCID

Affiliation:

1. Team of Analytical and Computational Chemistry,Nanotechnology and Environment, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco

2. Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco

3. Faculty of Medicine, Abulcasis University, Rabat, Morocco

Abstract

One of the significant challenges in the food industry is the determination of the geographical origin, since products from different regions can lead to great variance in raw milk. Therefore, monitoring the origin of raw milk has become very relevant for producers and consumers worldwide. In this exploratory study, midinfrared spectroscopy combined with machine learning classification methods was investigated as a rapid and nondestructive method for the classification of milk according to its geographical origin. The curse of dimensionality makes some classification methods struggle to train efficient models. Thus, principal component analysis (PCA) has been applied to create a smaller set of features. The application of machine learning methods such as PLS-DA, PCA-LDA, SVM, and PCA-SVM demonstrates that the best results are obtained using PLS-DA, PCA-LDA, and PCA-SVM methods which show a correct classification rate (CCR) of 100% for PLS-DA and PCA-LDA and 94.95% for PCA-SVM, whereas the application of SVM without feature extraction gives a low CCR of 66.67%. These findings demonstrate that FT-MIR spectroscopy, combined with machine learning methods, is an efficient and suitable approach to classify the geographical origins of raw milk.

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3