The Driver Time Memory Car-Following Model Simulating in Apollo Platform with GRU and Real Road Traffic Data

Author:

Fei Rong1ORCID,Li Shasha1ORCID,Hei Xinhong1ORCID,Xu Qingzheng2ORCID,Liu Fang3ORCID,Hu Bo4ORCID

Affiliation:

1. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

2. College of Information and Communication, National University of Defense Technology, Xi’an 710106, China

3. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

4. Beijing Huadian Youkong Technology Co., Ltd., Beijing 100193, China

Abstract

Car following is the most common phenomenon in single-lane traffic. The accuracy of acceleration prediction can be effectively improved by the driver’s memory in car-following behaviour. In addition, the Apollo autonomous driving platform launched by Baidu Inc. provides fast test vehicle following vehicle models. Therefore, this paper proposes a car-following model (CFDT) with driver time memory based on real-world traffic data. The CFDT model is firstly constructed by embedded gantry control unit storage capacity (GRU assisted) network. Secondly, the NGSIM dataset will be used to obtain the tracking data of small vehicles with similar driving behaviours from the common real road vehicle driving tracks for data preprocessing according to the response time of drivers. Then, the model is calibrated to obtain the driver’s driving memory and the optimal parameters of the model and structure. Finally, the Apollo simulation platform with high-speed automatic driving technology is used for 3D visualization interface verification. Comparative experiments on vehicle tracking characteristics show that the CFDT model is effective and robust, which improves the simulation accuracy. Meanwhile, the model is tested and validated using the Apollo simulation platform to ensure accuracy and utility of the model.

Funder

CERNET Innovation Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3