Prediction of Car-Following Behavior of Autonomous Vehicle and Human-Driven Vehicle Based on Drivers’ Memory and Cooperation With Lead Vehicle

Author:

Adewale Ayobami1ORCID,Lee Chris1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Windsor, Windsor, Ontario, Canada

Abstract

Autonomous vehicles (AVs) have moved from hype to reality as the penetration and acceptance rate continues to increase. As they are slowly integrated into traffic with human-driven vehicles (HDVs), it is necessary to predict the car-following behaviors of AVs and HDVs for better control of AV–HDV mixed traffic. This study extends a data-driven car-following model to incorporate drivers’ memory, and cooperation with the lead vehicle. The model predicts the following vehicle’s speed in AV–HDV mixed traffic. The effect of drivers’ cooperation on car-following behavior was modeled using prospect theory (PT), whereas the driver’s memory was incorporated using the memory cell of a long short-term memory (LSTM) neural network. This extended car-following model is called the “PT-LSTM model.” Real-world vehicle trajectories of HDVs and AVs in the Waymo AV Open Dataset were used to calibrate and validate the PT-LSTM model. The PT-LSTM model demonstrated higher accuracy compared with the LSTM model that did not consider drivers’ cooperation, the multiple layer perceptron model, Gipps’ model, and the intelligent driver model that incorporated PT. The importance of variables in different time steps in the PT-LSTM model was also evaluated using SHapley Additive exPlanations (SHAP). The SHAP results showed that AV followers were more likely to cooperate with the lead HDV, whereas HDV followers were more likely to cooperate with the lead AV than the lead HDV. Thus, this study underscores the importance of considering drivers’ memory and cooperation with the lead vehicle for the prediction of car-following behaviors in AV–HDV mixed traffic.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3