Characteristics of Spring Phenological Changes in China over the Past 50 Years

Author:

Dai Junhu1ORCID,Wang Huanjiong12,Ge Quansheng1

Affiliation:

1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, A 11, Datun Road, Chaoyang District, Beijing 100101, China

2. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

Abstract

In order to understand past plant phenological responses to climate change in China (1963–2009), we conducted trends analysis of spring phenophases based on observation data at 33 sites from the Chinese Phenological Observation Network (CPON). The phenological data on first leaf date (FLD) and first flowering date (FFD) for five broad-leaved woody plants from 1963 to 2009 were analyzed. Since most phenological time series are discontinuous because of observation interruptions at certain period, we first interpolated phenological time series by using the optimal model between the spring warming (SW) model and the UniChill model to form continuous time series. Subsequently, by using regression analysis, we found that the spring phenophases of woody plants in China advanced at a mean rate of 0.18 days/year over the past 50 years. Changes of spring phenophases exhibited strong regional difference. The linear trends in spring phenophases were −0.18, −0.28, −0.21, −0.04, and −0.14 days/year for the Northeast China Plain, the North China Plain, the Middle-Lower Yangtze Plain, the Yunnan-Guizhou Plateau, and South China, respectively. The spatial differences in phenological trends can be attributed to regional climate change patterns in China.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3