Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania

Author:

Bandoc Georgeta,Piticar Adrian,Patriche CristianORCID,Roșca Bogdan,Dragomir Elena

Abstract

Changes in plant phenology are a direct indicator of climate change and can produce important consequences for agricultural and ecological systems. This study analyzes changes in plant phenology in the 1961–2010 period (for both the entire interval and in three successive multi-decades: 1961–1990, 1971–2000 and 1981–2010) in southern and southeastern Romania, the country’s most important agricultural region. The analysis is based on mean monthly air temperature values collected from 24 regional weather stations, which were used for extracting the length (number of days) of phenophases (growing season onset, budding–leafing, flowering, fruiting, maturing, dissemination of seeds, start of leaf loss, end of leaf loss) and of the overall climatic growing season (CGS, which includes all phenophases), by means of the histophenogram method. Using a number of reliable statistical tools (Mann–Kendall test, Sen’s slope estimator and the regression method) for exploring annual trends and net (total) changes in the length of the phenological periods, as well as for detecting the climate—growing season statistical relationships, our results revealed complex phenology changes and a strong response in phenological dynamics to climate warming. Essentially, a lengthening of all phenophases (maximal in the maturing period, in terms of statistical significance and magnitude of trends—on average 0.48 days/yr/24 days net change in the 1961–2010 period, or even 0.94 days/yr/28 days net change in the 1971–2000 sub-period) was noticed, except for the fruiting and dissemination phenophases, which were dominated by negative trends in the number of days, but partially statistically significant (at a confidence level threshold of at least 90%). The CGS exhibited overall increasing trends, with an average of 0.21 days/yr/11 days net change in the 1961–2010 interval, and even of 0.90 days/yr/27 days net change in the 1981–2010 sub-period. Moreover, based on the slope values obtained upon application of a linear regression to mean temperature and CGS, we discovered that a 1 °C increase in climate warming accounted for a remarkable lengthening of the CGS, on average of 14 days between 1961 and 2010, and of 16 days between 1981 and 2010. Our results can help improve the adaptation of agroecological systems to future climate change.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3