Variation in Vegetation Phenology and Its Response to Climate Change in Marshes of Inner Mongolian

Author:

Liu Yiwen12,Shen Xiangjin1ORCID,Zhang Jiaqi1,Wang Yanji12,Wu Liyuan12,Ma Rong1,Lu Xianguo1,Jiang Ming1

Affiliation:

1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Inner Mongolia has a large area of marsh wetland in China, and the marsh in this region is important for maintaining ecological balance. Understanding variations in vegetation phenology of marsh ecosystems and their responses to climatic change is crucial for vegetation conservation of marsh wetlands in Inner Mongolia. Using the climate and NDVI data during 2001–2020, we explored the spatiotemporal changes in the start (SOS), end (EOS), and length (LOS) of vegetation growing season and analyzed the effects of climate change on vegetation phenology in the Inner Mongolia marshes. Results showed that SOS significantly (p < 0.05) advanced by 0.50 days/year, EOS significantly delayed by 0.38 days/year, and thus LOS considerably increased by 0.88 days/year during 2001–2020 in marshes of Inner Mongolia. Warming temperatures in winter and spring could significantly (p < 0.05) advance the SOS, and increased summer and autumn temperatures could delay EOS in Inner Mongolia marshes. We found for the first time that daytime maximum temperature (Tmax) and night minimum temperature (Tmin) had asymmetric effects on marsh vegetation phenology. Increasing Tmax had a stronger advancing effect on SOS than increasing Tmin from December to April. The increase of Tmin in August could obviously delayed EOS, while increasing Tmax in August had no significant effect on EOS. This study highlights that the asymmetric influences of nighttime and daytime temperatures should be taken into account in simulating marsh vegetation phenology in temperate arid and semi-arid regions worldwide, particularly in the context of global asymmetric diurnal warming.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Key Research Program of Frontier Sciences, CAS

Youth Innovation Promotion Association, CAS

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3