Characterizing Spring Phenological Changes of the Land Surface across the Conterminous United States from 2001 to 2021

Author:

Wu Wei1ORCID,Xin Qinchuan1ORCID

Affiliation:

1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Monitoring land surface phenology plays a fundamental role in quantifying the impact of climate change on terrestrial ecosystems. Shifts in land surface spring phenology have become a hot spot in the field of global climate change research. While numerous studies have used satellite data to capture the interannual variation of the start of the growing season (SOS), the understanding of spatiotemporal performances of SOS needs to be enhanced. In this study, we retrieved the annual SOS from the Moderate Resolution Imaging Spectroradiometer (MODIS) two-band enhanced vegetation index (EVI2) time series in the conterminous United States from 2001 to 2021, and explored the spatial and temporal patterns of SOS and its trend characteristics in different land cover types. The performance of the satellite-derived SOS was evaluated using the USA National Phenology Network (USA-NPN) and Harvard Forest data. The results revealed that SOS exhibited a significantly delayed trend of 1.537 days/degree (p < 0.01) with increasing latitude. The timing of the satellite-derived SOS was significantly and positively correlated with the in-situ data. Despite the fact that the overall trends were not significant from 2001 to 2021, the SOS and its interannual variability exhibited a wide range of variation across land cover types. The earliest SOS occurred in urban and built-up land areas, while the latest occurred in cropland areas. In addition, mixed trends in SOS were observed in sporadic areas of different land cover types. Our results found that (1) warming hiatus slows the advance of land surface spring phenology across the conterminous United States under climate change, and (2) large-scale land surface spring phenology trends extraction should consider the potential effects of different land cover types. To improve our understanding of climate change, we need to continuously monitor and analyze the dynamics of the land surface spring phenology.

Funder

National Key R&D Program of China

Natural Science Foundation of China

Guangdong Top Young Talents

Western Talents

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3