An ANN-Based Precision Compensation Method for Industrial Manipulators via Optimization of Point Selection

Author:

Wang Zhirong1,Chen Zhangwei1ORCID,Mao Chentao1ORCID,Zhang Xiang2

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou 310000, China

2. School of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, China

Abstract

Industrial manipulators are widely used in the manufacture of products due to their high flexibility and low costs. High absolute positioning accuracy is the key to guarantee the product quality, which is commonly improved through the error compensation technology. Due to the variety, complexity, and unpredictability of the error sources, the influence of the nongeometric errors on the absolute positioning accuracy of manipulators is uncertain. In result, the existing error compensation methods are difficult to obtain satisfying results, especially for manipulators with large joint flexibility that need to work in different task scenarios. In this paper, an artificial neural network- (ANN-) based precision compensation method via optimization of point selection is proposed, which deals with the kinematic errors and joint stiffness errors in different task scenarios. Firstly, the quasi-random sequence (QRS) method and the product of exponentials (POE) model are combined to identify and compensate the geometric parameters. The QRS method can select points evenly in the workspace. And the POE model can avoid the singularity problem of Denavit–Hartenberg (DH) model. Secondly, a continuous joint stiffness compensation model in the whole workspace is established through ANN. In order to get better compensation results for the current task scenario, the point selection method based on trajectory similarity is adopted to determine the training data of ANN. Finally, the experiments are conducted on a 6-DOF industrial manipulator to demonstrate the validity of the proposed method. The results show that the ANN-based method via optimization of point selection could be an effective solution for the precision compensation.

Funder

Key R&D Program of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3