Trajectory Control Algorithm of Flexible Joint Manipulator Based on Random Matrix and Screw Theory

Author:

Guo Hao1ORCID,Zhou Dashuai1,He Yao1

Affiliation:

1. Department of Mechanical Manufacturing, School of Mines and Mechanical Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, China

Abstract

Flexible articulated manipulators are often used for the task of tracking reference trajectories in space and have attracted much attention. Aiming at the uncertainty of the robot system, based on random matrix and screw theory, this paper constructs a trajectory control model of a flexible joint manipulator. In order to reduce the steady-state tracking error, a random matrix variable structure control method is introduced into the model, and a nonlinear spinor-like random matrix function is designed to improve the traditional random matrix surface. In the simulation process, the dynamic model of the series robot is firstly obtained according to the screw and random matrix equation, and the dynamic characteristics are analyzed. Combined with dynamic surface control technology, a neural network controller is designed to solve the problem of dimensional explosion and ensure that the tracking error converges to a small neighborhood of zero. The experimental results show that by using the observation value to replace the unmeasurable state of the system, combining it with the random matrix network to identify the unknown dynamics of the system, and designing the random matrix network controller, the tracking control of the system can be realized, and the tracking error can be ensured to converge to a small neighborhood of zero. The control system has a better control effect than traditional PID, the peak time is shortened by 45.83%, the adjustment time is shortened by 46.91%, the maximum overshoot is reduced by 51.35%, and the steady-state error after filtering is only 0.049, which is reduced by 47.31%. Effective interference signal and measurement noise are suppressed, and the quantitative observation performance of the flexible joint manipulator system is improved.

Funder

Design and Research on 7DOF Redundant Manipulator of Picking Robot

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3