Committee Machines for Hourly Water Demand Forecasting in Water Supply Systems

Author:

Ambrosio Julia K.1,Brentan Bruno M.2ORCID,Herrera Manuel3ORCID,Luvizotto Edevar2,Ribeiro Lubienska1,Izquierdo Joaquín4ORCID

Affiliation:

1. School of Technology, Universidade Estadual de Campinas, Campinas, Brazil

2. LHC-School of Civil Engineering, Universidade Estadual de Campinas, Campinas, Brazil

3. Institute for Manufacturing, Department of Engineering, University of Cambridge, UK

4. Fluing-Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, Valencia, Spain

Abstract

Prediction models have become essential for the improvement of decision-making processes in public management and, particularly, for water supply utilities. Accurate estimation often needs to solve multimeasurement, mixed-mode, and space-time problems, typical of many engineering applications. As a result, accurate estimation of real world variables is still one of the major problems in mathematical approximation. Several individual techniques have shown very good estimation abilities. However, none of them are free from drawbacks. This paper faces the challenge of creating accurate water demand predictive models at urban scale by using so-called committee machines, which are ensemble frameworks of single machine learning models. The proposal is able to combine models of varied nature. Specifically, this paper analyzes combinations of such techniques as multilayer perceptrons, support vector machines, extreme learning machines, random forests, adaptive neural fuzzy inference systems, and the group method for data handling. Analyses are checked on two water demand datasets from Franca (Brazil). As an ensemble tool, the combined response of a committee machine outperforms any single constituent model.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3