A short-term water demand forecasting model using multivariate long short-term memory with meteorological data

Author:

Zanfei Ariele1ORCID,Brentan Bruno Melo2,Menapace Andrea1,Righetti Maurizio1

Affiliation:

1. a Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano, Italy

2. b Hydraulic Engineering and Water Resources Department, School of Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil

Abstract

Abstract Sustainable management of water resources is a key challenge nowadays and in the future. Water distribution systems have to ensure fresh water for all users in an increasing demand scenario related to the long-term effects due to climate change. In this context, a reliable short-term water demand forecasting model is crucial for the optimal management of water resources. This study proposes a novel deep learning model based on long short-term memory (LSTM) neural networks to forecast hourly water demand. Due to the limitations of using multiple input sequences with different time lengths using LSTM, the proposed deep learning model is developed with two modules that process different temporal sequences of data: a first module aimed at dealing with short-term meteorological information and a second module aimed at representing the longer-term information of the water demand. The proposed dual-module structure allows a multivariate selection of the inputs with sequences of a different time length. The performance of the proposed deep learning model is compared to a conventional multi-layer perceptron (MLP) and a seasonal integrated moving average (SARIMA) model in a real case study. The results highlight the potential of the proposed multivariate approach in short-term water demand prediction, outperforming the more conventional approaches.

Funder

Libera Università di Bolzano

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3