Investigation of Aerodynamic Stability of a Lightweight Dual-Arm Power Transmission Line Inspection Robot under the Influence of Wind

Author:

Alhassan Ahmad Bala1ORCID,Zhang Xiaodong12,Shen Haiming1,Jian Guo1,Xu Haibo12,Hamza Khaled1

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Shaanxi Province Key Laboratory of Intelligent Robotics, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

To efficiently transmit electric power to consumers, the power lines need to be inspected routinely for early fault detection. Thus, power line inspection robots are designed to replace the tedious and dangerous manual inspection using linemen or helicopters. However, most of the existing inspection robots are heavy, which make them slow and prone to external wind disturbance. This paper developed a lightweight dual-arm robot and investigates its robustness to wind disturbance on a lab-scale power line structure. The dynamic equations of the robot are derived using the Lagrangian equation for appropriate motor selection. Also, the components of the robot are designed to ensure low drag coefficient to wind flow, and the mechanism of the wind force on the robot-line coupled system is presented. To study the real-time impact of the wind, a wind speed of 4.5 m/s representing one of the windiest cities in China is considered as a case study. The experimental results for different wind directions, namely, 0°, 45°, and 90°, show that the maximum vibration is 8% higher than the normal vibration of the system in a controlled environment without wind. The results demonstrate that there is little influence of the wind on the system; hence, the robot has been successfully designed and can be applied for power line inspection.

Funder

Key Project of Key Research and Development Program in Shaanxi

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3