Design of an Over-Actuated Hexacopter Tilt-Rotor for Landing and Coupling in Power Transmission Lines

Author:

Leal Lopes Vitor1ORCID,Honório Leonardo1ORCID,Santos Murillo2ORCID,Pancoti Antônio1,Silva Mathaus1ORCID,Diniz Lucas1,Mercorelli Paolo3ORCID

Affiliation:

1. Faculty of Engineering, UFJF-Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil

2. Department of Electroelectronics, CEFET-MG-Federal Center of Technological Education of Minas Gerais, Leopoldina 36700-001, Brazil

3. IPTS-Institute for Production Technology and Systems, Leuphana University of Lüneburg, 21335 Lüneburg, Germany

Abstract

It is known that new power transmission line inspection techniques have been developed over the last few years with great potential to improve and, in some cases, even replace traditional inspection procedures such as using helicopters and cars. A series of Unmanned Aerial Vehicles (UAVs) such as fixed-wing or rotary-wing UAVs, and vehicles that climb on the power transmission line, promise to revolutionize the inspection market. In this light, at least 39 new research studies and/or products have been conducted and/or introduced to the market, respectively. However, in an incipient way, some works point to the fusion of some technologies: the development of multi-rotor UAVs and the ability to connect and move over the power transmission line. In line with this, the current work was proposed, with significant unprecedented advances (such as an over-actuated control capacity with tilt rotors, the capability of a displacement in the angle, and the maintenance of active motors on the power transmission line), and the design, modeling, and control of an over-actuated UAV able to move over the conductor cable without the need for a new locomotion system is presented. The aircraft allows for a greater response and the indispensable ability to approximate landing in a power transmission line arbitrary position rather than the catenary lowest point (due to its ability to forward/backward move using the tilting rotors). Its design is detailed, its subsystems are described, and its normal and coupled flight mode dynamics are modeled. The results show good stability and reliable maneuvers for the coupling-to-power-transmission-line flight mode, without any overshoots, and the ability to follow the entire catenary through different Real Control Action (RCA) sets.

Funder

TBE with the supervision of ANEEL

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3