A Repeatable Optimization for Kinematic Energy System with Its Mobile Manipulator Application

Author:

Kong Ying1ORCID,Zhang Ruiyang1,Jiang Yunliang2ORCID,Xia Xiaoyun3

Affiliation:

1. Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, China

2. School of Information Engineering, Huzhou University, China

3. College of Mathematics, Physics and Information Engineering, Jiaxing University, China

Abstract

For repeatable motion of redundant mobile manipulators, the flexible base platform and the redundant manipulator have to be returned to the desired initial position simultaneously after completing the given tasks. To remedy deviations between initial position and desired position of each kinematic joint angle, a special kind of repeatable optimization for kinematic energy minimization based on terminal-time Zhang neural network (TTZNN) with finite-time convergence is proposed for inverse kinematics of mobile manipulators. It takes the advantages that each joint of the manipulator is required to return to the desired initial position not considering the initial orientation of itself for realizing repeatable kinematics control. Unlike the existed training methods, such an optimization of kinematic energy scheme based on TTZNN can not only reduce the convergent position error of each joint to zero in finite time, but also improve the convergent precision. Theoretical analysis and verifications show that the proposed optimal kinematic energy scheme accelerates the convergent rate, which is tended to be applied in practical robot kinematics. Simulation results on the manipulator with three mobile wheels substantiate the timeliness and repetitiveness of the proposed optimization scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3