A Gradient-Based Recurrent Neural Network for Visual Servoing of Robot Manipulators with Acceleration Command

Author:

Huang Zhiguan1ORCID,Xie Zhengtai2ORCID,Jin Long12ORCID,Li Yuhe1ORCID

Affiliation:

1. Guangdong Provincial Engineering Technology Research Center for Sports Assistive Devices, Guangzhou Sport University, Guangzhou, China

2. School of Information Science and Engineering, Lanzhou University, Lanzhou, China

Abstract

Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with remarkable achievements. This article researches a crucial technique of robot manipulators referred to as visual servoing, which relies on the visual feedback to respond to the external information. In this regard, the visual servoing issue is tactfully transformed into a quadratic programming problem with equality and inequality constraints. Differing from the traditional methods, a gradient-based recurrent neural network (GRNN) for solving the visual servoing issue is newly proposed in this article in the light of the gradient descent method. Then, the stability proof is presented in theory with the pixel error convergent exponentially to zero. Specifically speaking, the proposed method is able to impel the manipulator to approach the desired static point while maintaining physical constraints considered. After that, the feasibility and superiority of the proposed GRNN are verified by simulative experiments. Significantly, the proposed visual servo method can be leveraged to medical robots and rehabilitation robots to further assist doctors in treating patients remotely.

Funder

Guangzhou Sport University Innovation and Strengthen Project

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3