A Precise Medical Imaging Approach for Brain MRI Image Classification

Author:

Siddiqi Muhammad Hameed1ORCID,Alsayat Ahmed1,Alhwaiti Yousef1,Azad Mohammad1,Alruwaili Madallah1,Alanazi Saad1,Kamruzzaman M. M.1,Khan Asfandyar2ORCID

Affiliation:

1. College of Computer and Information Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia

2. Institute of Computer Science & IT, The University of Agriculture Peshawar, Peshawar, Pakistan

Abstract

Magnetic resonance imaging (MRI) is an accurate and noninvasive method employed for the diagnosis of various kinds of diseases in medical imaging. Most of the existing systems showed significant performances on small MRI datasets, while their performances decrease against large MRI datasets. Hence, the goal was to design an efficient and robust classification system that sustains a high recognition rate against large MRI dataset. Accordingly, in this study, we have proposed the usage of a novel feature extraction technique that has the ability to extract and select the prominent feature from MRI image. The proposed algorithm selects the best features from the MRI images of various diseases. Further, this approach discriminates various classes based on recursive values such as partial Z-value. The proposed approach only extracts a minor feature set through, respectively, forward and backward recursion models. The most interrelated features are nominated in the forward regression model that depends on the values of partial Z-test, while the minimum interrelated features are diminished from the corresponding feature space under the presence of the backward model. In both cases, the values of Z-test are estimated through the defined labels of the diseases. The proposed model is efficiently looking the localized features, which is one of the benefits of this method. After extracting and selecting the best features, the model is trained by utilizing support vector machine (SVM) to provide the predicted labels to the corresponding MRI images. To show the significance of the proposed model, we utilized a publicly available standard dataset such as Harvard Medical School and Open Access Series of Imaging Studies (OASIS), which contains 24 various brain diseases including normal. The proposed approach achieved the best classification accuracy against existing state-of-the-art systems.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3