Rock Mineral Volume Inversion Using Statistical and Machine Learning Algorithms for Enhanced Geothermal Systems in Upper Rhine Graben, Eastern France

Author:

Joshua Pwavodi12ORCID,Marquis Guy1ORCID,Maurer Vincent3,Glaas Carole3,Montagud Anais4,Formento Jean‐Luc4,Genter Albert3,Darnet Mathieu2ORCID

Affiliation:

1. Ecole et Observatoire des Sciences de la Terre ITES UMR7063—CNRS/Université de Strasbourg Strasbourg France

2. Bureau des Recherches Géologiques et Minières (BRGM) Orléans France

3. Electricité de Strasbourg—Géothermie Mundolsheim France

4. CGG Massy France

Abstract

AbstractAccurately determining the mineralogical composition of rocks is essential for precise assessments of key petrophysical properties like effective porosity, water saturation, clay volume, and permeability. Mineral volume inversion is particularly critical in geological contexts characterized by heterogeneity, such as in the Upper Rhine Graben (URG), where both carbonate and siliciclastic formations are prevalent. The estimation of mineral volumes poses challenges that involve both linear and nonlinear relationships associated with geophysical data. To address this complexity, our methodology strategically integrates the robust insights from standard statistical approaches with three machine learning (ML) algorithms: multi‐layer perceptron, random forest regression, and gradient boosting regression. Furthermore, we propose a new hybrid ensemble model that incorporates a weighted average of multiple ML approaches to predict mineral composition within the Muschelkalk and Buntsandstein formations of the URG. ML techniques for mineral composition prediction in these formations exhibit robust predictive performance. The predicted mineral volumes align closely with quantitative estimates derived from X‐ray diffraction analysis. Additionally, they are in good qualitative agreement with mineral descriptions obtained from cores and cuttings of the Muschelkalk and Buntsandstein formations.

Funder

Agence de la transition écologique

Publisher

American Geophysical Union (AGU)

Reference59 articles.

1. Subsurface temperature distribution in Germany

2. Neural Networks and Deep Learning

3. A theory of adaptive pattern classifier;Amari S.;IEEE Transactions,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3