An improved method for diagnosis of Parkinson’s disease using deep learning models enhanced with metaheuristic algorithm

Author:

Majhi Babita,Kashyap Aarti,Mohanty Siddhartha Suprasad,Dash Sujata,Mallik Saurav,Li Aimin,Zhao Zhongming

Abstract

AbstractParkinson's disease (PD) is challenging for clinicians to accurately diagnose in the early stages. Quantitative measures of brain health can be obtained safely and non-invasively using medical imaging techniques like magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT). For accurate diagnosis of PD, powerful machine learning and deep learning models as well as the effectiveness of medical imaging tools for assessing neurological health are required. This study proposes four deep learning models with a hybrid model for the early detection of PD. For the simulation study, two standard datasets are chosen. Further to improve the performance of the models, grey wolf optimization (GWO) is used to automatically fine-tune the hyperparameters of the models. The GWO-VGG16, GWO-DenseNet, GWO-DenseNet + LSTM, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 are applied to the T1,T2-weighted and SPECT DaTscan datasets. All the models performed well and obtained near or above 99% accuracy. The highest accuracy of 99.94% and AUC of 99.99% is achieved by the hybrid model (GWO-VGG16 + InceptionV3) for T1,T2-weighted dataset and 100% accuracy and 99.92% AUC is recorded for GWO-VGG16 + InceptionV3 models using SPECT DaTscan dataset.

Funder

Cancer Prevention and Research Institute of Texas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3