Vibration and Performance Analyses Using Individual Blade Pitch Controls for Lift-Offset Rotors

Author:

Park Jae-Sang1ORCID,Kim Do-Hyung2ORCID,Chae Sanghyun2,Lee Ye-Lin1,Go Jeong-In3

Affiliation:

1. Department of Aerospace Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

2. Aircraft System Division, Korea Aerospace Research Institute, Daejeon 34133, Republic of Korea

3. Aeronautical Technology Directorate, Agency for Defense Development, Daejeon 34060, Republic of Korea

Abstract

This work attempts to reduce the hub vibratory loads of a lift-offset rotor using IBC (individual blade pitch control) in high-speed forward flight. As a lift-offset rotor for the present study, the rigid coaxial rotor of a XH-59A compound helicopter is considered and CAMRAD II is used to predict the hub vibration and rotor performance. Using the IBC with a single harmonic input at 200 knots, the vibration index of the XH-59A rotor is minimized by about 62% when the 3/rev actuation frequency is applied with the IBC amplitude of 1° and control phase angle of 270° (3P/1°/270°); however, the rotor effective lift-to-drag ratio decreases by 3.43%. When the 2/rev actuation frequency with the amplitude of 2° and control phase angle of 270° (2P/2°/270°) and the 3/rev actuation frequency using the magnitude of 1° and control phase angle of 210° (3P/1°/210°) are used in combination for the IBC with multiple harmonic inputs, the vibration index is reduced by about 62%, while the rotor effective lift-to-drag ratio increases by 0.37% at a flight speed of 200 knots. This study shows that the hub vibration of the lift-offset rotor in high-speed flight can be reduced significantly but the rotor performance increases slightly, using the IBC with multiple harmonic inputs.

Funder

Agency for Defense Development

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3