Active vibration reductions of a lift-offset compound helicopter using individual blade pitch control with multiple harmonic inputs

Author:

Kwon Young-Min,Hong Sung-Boo,Park Jae-Sang,Lee Yu-Been

Abstract

Purpose The purpose of this study is to use the individual blade pitch control (IBC), reduce actively both the rotor hub vibratory loads and airframe vibration responses for the lift-offset compound helicopter at a high-speed flight condition. Design/methodology/approach The Sikorsky X2 technology demonstrator (X2TD) is used as the lift-offset compound helicopter. The X2TD lift-offset rotor is modelled and its rotor hub vibratory loads at a flight speed of 250 knots are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe structural dynamics is represented with a finite element analysis code, MSC.NASTRAN. When the propulsive trim methodology is applied for rotor trim, the best input condition for IBC using multiple harmonic inputs is searched to reduce the rotor vibration, while the rotor aerodynamic performance (the rotor effective lift-to-drag ratio) is improved or maintained at least. Finally, the reduction in airframe vibration responses is investigated when the best input condition for IBC with multiple harmonics is applied to the lift-offset rotor. Findings When the IBC with the single harmonic input using the 2/rev actuation frequency, amplitude of 2° and control phase angle of 120° (2P/2°/120°) is considered for X2TD rotor, the rotor vibration is reduced by about 26.37% only and the rotor effective lift-to-drag ratio increases slightly by 0.98%. When X2TD rotor uses the IBC with multiple harmonic inputs (2P/2°/45° + 5P/1°/90°), the rotor hub vibratory loads and airframe vibration responses are reduced by 44.69% and from 0.48 to 79.10%, respectively, while rotor effective lift-to-drag ratio is improved by 0.77%, as compared to the baseline without IBC. Originality/value This study is the first study to use the 2/rev actuation for IBC to the four-bladed lift-offset coaxial rotor and to investigate to obtain simultaneously the rotor vibration reduction, rotor performance improvement and airframe vibration reduction, using IBC with multiple harmonic inputs.

Publisher

Emerald

Subject

Aerospace Engineering

Reference18 articles.

1. Aerodynamic design of the X2 technology DemonstratorTM main rotor blades,2008

2. Dynamics design characteristics of the Sikorsky X2 TechnologyTM demonstrator aircraft,2008

3. Design and performance of lift-offset rotorcraft for short-haul missions,2012

4. CFD/CSD study of interactional aerodynamics of a coaxial compound helicopter in high-speed forward flight,2020

5. CFD/CSD study of the aerodynamic interactions of a coaxial rotor in high-speed forward flight,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3