Numerical and experimental analysis on the helicopter rotor dynamic load controlled by the actively trailing edge flap

Author:

Zhou Z XORCID,Huang X CORCID,Tian J J,Hua H X,Tang M,Wang C

Abstract

Abstract Reducing the rotor dynamic load is an important issue to improve the performance and reliability of a helicopter. The control mechanism of the actively controlled flap (ACF) on the rotor dynamic load is numerically and experimentally investigated by a 3-blade helicopter rotor in this paper. In the aero-elastic numerical approach, the complex motion of the rotor such as the stretching, bending, torsion and pitching of the blade including the deflection of the ACF are all taken into consideration in the structural formulation. The aerodynamic solution adopted the vortex lattice method combined with the free wake model, in which the influence of ACF on the free wake and the aerodynamic load on the blade is taken into account as well. While the experimental method of measuring hub loads and acoustic was accomplished by a rotor rig in a wind tunnel. The result shows that the 3/rev ACF actuation can reduce the 3ω hub load by more than 50% at maximum, which is significantly better than the 4/rev control. While 4/rev has greater potential to reduce blade vortex interaction (BVI) loads than 3/rev with µ = 0.15. Further mechanistic analysis shows that by changing the phase difference between the dynamic load on the flap and the rest of the blade, the peak load on the whole blade can be improved, thus achieving effective control of the hub dynamic load, the flap reaches the minimum angle of attack at 90–100 azimuth under best control condition; when the BVI load is perfectly controlled, the flap reaches the minimum angle of attack at 140 azimuth, and by changing the circulation of the wake, the intensity of BVI in the advancing side is improved. Moreover, an interesting finding in the optimal control of noise and vibration is that an overlap point exists on the motion patterns of the flap with different frequencies.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3