Affiliation:
1. College of Computer Science and Software, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
2. Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing, Jiangsu 210023, China
Abstract
In big data era, massive and high-dimensional data is produced at all times, increasing the difficulty of analyzing and protecting data. In this paper, in order to realize dimensionality reduction and privacy protection of data, principal component analysis (PCA) and differential privacy (DP) are combined to handle these data. Moreover, support vector machine (SVM) is used to measure the availability of processed data in our paper. Specifically, we introduced differential privacy mechanisms at different stages of the algorithm PCA-SVM and obtained the algorithms DPPCA-SVM and PCADP-SVM. Both algorithms satisfy
-DP while achieving fast classification. In addition, we evaluate the performance of two algorithms in terms of noise expectation and classification accuracy from the perspective of theoretical proof and experimental verification. To verify the performance of DPPCA-SVM, we also compare our DPPCA-SVM with other algorithms. Results show that DPPCA-SVM provides excellent utility for different data sets despite guaranteeing stricter privacy.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献