Author:
Beimel Amos,Nissim Kobbi,Stemmer Uri
Publisher
Springer Berlin Heidelberg
Reference21 articles.
1. Lecture Notes in Computer Science;A. Beimel,2010
2. Beimel, A., Nissim, K., Stemmer, U.: Characterizing the sample complexity of private learners. In: ITCS, pp. 97–110 (2013)
3. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ framework. In: PODS, pp. 128–138. ACM (2005)
4. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive database privacy. J. ACM 60(2), 12:1–12:25 (2013)
5. Chaudhuri, K., Hsu, D.: Sample complexity bounds for differentially private learning. In: COLT, vol. 19, pp. 155–186 (2011)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SoK: A Review of Differentially Private Linear Models For High-Dimensional Data;2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML);2024-04-09
2. PILLAR: How to make semi-private learning more effective;2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML);2024-04-09
3. Differential Privacy with Selected Privacy Budget $$\epsilon $$ in a Cyber Physical System Using Machine Learning;Lecture Notes in Computer Science;2024
4. Empirical Analysis of The Privacy-Utility Trade-off of Classification Algorithms Under Differential Privacy;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13
5. Universal Private Estimators;Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2023-06-18