Differentially Private Singular Value Decomposition for Training Support Vector Machines

Author:

Sun Zhenlong12ORCID,Yang Jing1ORCID,Li Xiaoye2ORCID

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

2. College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China

Abstract

Support vector machine (SVM) is an efficient classification method in machine learning. The traditional classification model of SVMs may pose a great threat to personal privacy, when sensitive information is included in the training datasets. Principal component analysis (PCA) can project instances into a low-dimensional subspace while capturing the variance of the matrix A as much as possible. There are two common algorithms that PCA uses to perform the principal component analysis, eigenvalue decomposition (EVD) and singular value decomposition (SVD). The main advantage of SVD compared with EVD is that it does not need to compute the matrix of covariance. This study presents a new differentially private SVD algorithm (DPSVD) to prevent the privacy leak of SVM classifiers. The DPSVD generates a set of private singular vectors that the projected instances in the singular subspace can be directly used to train SVM while not disclosing privacy of the original instances. After proving that the DPSVD satisfies differential privacy in theory, several experiments were carried out. The experimental results confirm that our method achieved higher accuracy and better stability on different real datasets, compared with other existing private PCA algorithms used to train SVM.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3