Machine Learning Based Statistical Prediction Model for Improving Performance of Live Virtual Machine Migration

Author:

Patel Minal1ORCID,Chaudhary Sanjay2,Garg Sanjay3

Affiliation:

1. Computer Engineering Department, A. D. Patel Institute of Technology, New Vallabh Vidhyanagar, Post Box 52, Vitthal Udyognagar, Anand District, Gujarat 388121, India

2. Institute of Engineering & Technology (IET), Ahmedabad University, Ahmedabad, Gujarat, India

3. Institute of Technology, Nirma University, Ahmedabad, Gujarat, India

Abstract

Service can be delivered anywhere and anytime in cloud computing using virtualization. The main issue to handle virtualized resources is to balance ongoing workloads. The migration of virtual machines has two major techniques: (i) reducing dirty pages using CPU scheduling and (ii) compressing memory pages. The available techniques for live migration are not able to predict dirty pages in advance. In the proposed framework, time series based prediction techniques are developed using historical analysis of past data. The time series is generated with transferring of memory pages iteratively. Here, two different regression based models of time series are proposed. The first model is developed using statistical probability based regression model and it is based on ARIMA (autoregressive integrated moving average) model. The second one is developed using statistical learning based regression model and it uses SVR (support vector regression) model. These models are tested on real data set of Xen to compute downtime, total number of pages transferred, and total migration time. The ARIMA model is able to predict dirty pages with 91.74% accuracy and the SVR model is able to predict dirty pages with 94.61% accuracy that is higher than ARIMA.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3