Optimizing pre-copy live virtual machine migration in cloud computing using machine learning-based prediction model

Author:

Haris Raseena M.,Barhamgi Mahmoud,Nhlabatsi Armstrong,Khan Khaled M.

Abstract

AbstractOne of the preconditions for efficient cloud computing services is the continuous availability of services to clients. However, there are various reasons for temporary service unavailability due to routine maintenance, load balancing, cyber-attacks, power management, fault tolerance, emergency incident response, and resource usage. Live Virtual Machine Migration (LVM) is an option to address service unavailability by moving virtual machines between hosts without disrupting running services. Pre-copy memory migration is a common LVM approach used in cloud systems, but it faces challenges due to the high rate of frequently updated memory pages known as dirty pages. Transferring these dirty pages during pre-copy migration prolongs the overall migration time. If there are large numbers of remaining memory pages after a predefined iteration of page transfer, the stop-and-copy phase is initiated, which significantly increases downtime and negatively impacts service availability. To mitigate this issue, we introduce a prediction-based approach that optimizes the migration process by dynamically halting the iteration phase when the predicted downtime falls below a predefined threshold. Our proposed machine learning method was rigorously evaluated through experiments conducted on a dedicated testbed using KVM/QEMU technology, involving different VM sizes and memory-intensive workloads. A comparative analysis against proposed pre-copy methods and default migration approach reveals a remarkable improvement, with an average 64.91% reduction in downtime for different RAM configurations in high-write-intensive workloads, along with an average reduction in total migration time of approximately 85.81%. These findings underscore the practical advantages of our method in reducing service disruptions during live virtual machine migration in cloud systems.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3