VTGAN: hybrid generative adversarial networks for cloud workload prediction

Author:

Maiyza Aya I.,Korany Noha O.,Banawan Karim,Hassan Hanan A.,Sheta Walaa M.

Abstract

AbstractEfficient resource management approaches have become a fundamental challenge for distributed systems, especially dynamic environment systems such as cloud computing data centers. These approaches aim at load-balancing or minimizing power consumption. Due to the highly dynamic nature of cloud workloads, traditional time series and machine learning models fail to achieve accurate predictions. In this paper, we propose novel hybrid VTGAN models. Our proposed models not only aim at predicting future workloads but also predicting the workload trend (i.e., the upward or downward direction of the workload). Trend classification could be less complex during the decision-making process in resource management approaches. Also, we study the effect of changing the sliding window size and the number of prediction steps. In addition, we investigate the impact of enhancing the features used for training using the technical indicators, Fourier transforms, and wavelet transforms. We validate our models using a real cloud workload dataset. Our results show that VTGAN models outperform traditional deep learning and hybrid models, such as LSTM/GRU and CNN-LSTM/GRU, concerning cloud workload prediction and trend classification. Our proposed model records an upward prediction accuracy ranging from $$95.4\%$$ 95.4 % to $$96.6\%$$ 96.6 % .

Funder

City of Scientific Research and Technological Applications

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference89 articles.

1. Alibaba cluster traces. https://github.com/alibaba/clusterdata. Accessed Mar 2022

2. Dinda. http://www.cs.cmu.edu/~pdinda/LoadTraces/. Accessed Mar 2022

3. Google cluster data. https://github.com/google/cluster-data. Accessed Apr 2022

4. The planetlab traces. http://github.com/beloglazov/planetlab-workload-traces. Accessed May 2022

5. Wikimedia foundation. http://dumps.wikimedia.org/other/pagecounts-raw. Accessed May 2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3