Finite-Time Formation Control without Collisions for Multiagent Systems with Communication Graphs Composed of Cyclic Paths

Author:

Flores-Resendiz J. F.1,Aranda-Bricaire E.1,González-Sierra J.1,Santiaguillo-Salinas J.1

Affiliation:

1. CINVESTAV, Electrical Engineering Department, Mechatronics Section, AP 14-740, 07000 México, DF, Mexico

Abstract

This paper addresses the formation control problem without collisions for multiagent systems. A general solution is proposed for the case of any number of agents moving on a plane subject to communication graph composed of cyclic paths. The control law is designed attending separately the convergence to the desired formation and the noncollision problems. First, a normalized version of the directed cyclic pursuit algorithm is proposed. After this, the algorithm is generalized to a more general class of topologies, including all the balanced formation graphs. Once the finite-time convergence problem is solved we focus on the noncollision complementary requirement adding a repulsive vector field to the previous control law. The repulsive vector fields display an unstable focus structure suitably scaled and centered at the position of the rest of agents in a certain radius. The proposed control law ensures that the agents reach the desired geometric pattern in finite time and that they stay at a distance greater than or equal to some prescribed lower bound for all times. Moreover, the closed-loop system does not exhibit undesired equilibria. Numerical simulations and real-time experiments illustrate the good performance of the proposed solution.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3