Formation Control for Second-Order Multi-Agent Systems with Collision Avoidance

Author:

Flores-Resendiz Juan Francisco1ORCID,Avilés David1ORCID,Aranda-Bricaire Eduardo2ORCID

Affiliation:

1. Faculty of Engineering, Administrative and Social Sciences, Autonomous University of Baja California, Tecate 21460, Mexico

2. Mechatronics Section, Department of Electrical Engineering, CINVESTAV, Mexico City 07360, Mexico

Abstract

This paper deals with the formation control problem without collisions for second-order multi-agent systems. We propose a control strategy which consists of a bounded attractive component to ensure convergence to a specific geometrical pattern and a complementary repulsive component to guarantee collision-free rearrangement. For convergence purposes, it is assumed that the communication graph contains at least a directed spanning tree. The avoidance complementary component is formed by applying repulsive vector fields with unstable focus structure. Using the well-known input-to-state stability property a control law for second-order agents is derived in a constructive manner starting from the first-order case. We consider that every agent is able to detect the presence of any other agent in the surrounding area and also can measure and share both position and velocity with his predefined set of neighbours. The resulting control law ensures the convergence to the desired geometrical pattern without collisions during the transient behaviour, as well as bounded velocities and accelerations. Numerical simulations are provided to show the performance and effectiveness of the proposed strategy.

Funder

CONACYT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3