Ricci Curvature for Warped Product Submanifolds of Sasakian Space Forms and Its Applications to Differential Equations

Author:

Mofarreh Fatemah1ORCID,Ali Akram2ORCID,Alluhaibi Nadia3ORCID,Belova Olga4ORCID

Affiliation:

1. Mathematical Science Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11546, Saudi Arabia

2. Department of Mathematics, College of Science, King Khalid University, 9004 Abha, Saudi Arabia

3. Department of Mathematics, Science and Arts College, Rabigh Campus, King Abdulaziz University,, Jeddah 21589, Saudi Arabia

4. Institute of Physical and Mathematical Sciences and IT, Immanuel Kant Baltic Federal University, 5A. Nevskogo st. 14, 236016 Kaliningrad, Russia

Abstract

In the present paper, we establish a Chen–Ricci inequality for a C-totally real warped product submanifold M n of Sasakian space forms M 2 m + 1 ε . As Chen–Ricci inequality applications, we found the characterization of the base of the warped product M n via the first eigenvalue of Laplace–Beltrami operator defined on the warping function and a second-order ordinary differential equation. We find the necessary conditions for a base B of a C-totally real-warped product submanifold to be an isometric to the Euclidean sphere S p .

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3