An Advanced Deep Attention Collaborative Mechanism for Secure Educational Email Services

Author:

Chen Yanfang1ORCID,Yang Yongzhao1

Affiliation:

1. Zhengzhou Preschool Education College, Zhengzhou 450000, China

Abstract

The COVID-19 crisis has once again highlighted the vulnerabilities of some critical areas in cyberspace, especially in the field of education, as distance learning and social distance have increased their dependence on digital technologies and connectivity. Many recent cyberattacks on e-learning systems, educational content services, and trainee management systems have created severe demands for specialized technological solutions to protect the security of modern training methods. Email is one of the most critical technologies of educational organizations that are attacked daily by spam, phishing campaigns, and all kinds of malicious programs. Considering the efforts made by the global research community to ensure educational processes, this study presents an advanced deep attention collaborative filter for secure academic email services. It is a specialized application of intelligent techniques that, for the first time, examines and models the problem of spam as a system of graphs where collaborative referral systems undertake the processing and analysis of direct and indirect social information to detect and categorize spam emails. In this study, nonnegative matrix factorization (NMF) is applied to the social graph adjacent table to place users in one (or more) overlapping communities. Also, using a deep attention mechanism, it becomes personalized for each user. At the same time, with the introduction of exponential random graph models (ERGMs) in the process of factorization, local dependencies are significantly mitigated to achieve the revelation of malicious communities. This methodology is being tested successfully in implementing mail protection systems for educational organizations. According to the findings, the proposed algorithm outperforms all other compared algorithms in every metric tested.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3