Empirical Compression Features of Mobile Computing and Data Applications Using Deep Neural Networks

Author:

Almagrabi Hana1ORCID,Alshareef Abdulrhman M.1ORCID,Manoharan Hariprasath2ORCID,Mujlid Hana3ORCID,Yafoz Ayman1,Selvarajan Shitharth4ORCID

Affiliation:

1. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Electronics and Communication Engineering, Panimalar Engineering College, Poonamallee, Chennai, India

3. Department of Computer Engineering, Faculty of Computer Engineering, Taif University, Taif, Saudi Arabia

4. Department of Computer Science, Kebri Dehar University, Kebri Dehar, Ethiopia

Abstract

Due to the enormous data sizes involved in mobile computing and multimedia data transfer, it is possible that more data traffic may be generated, necessitating the use of data compression. As a result, this paper investigates how mobile computing data are compressed under all transmission scenarios. The suggested approach integrates deep neural networks (DNN) at high weighting functionalities for compression modes. The proposed method employs appropriate data loading and precise compression ratios for successful data compression. The accuracy of multimedia data that must be conveyed to various users is higher even though compression ratios are higher. The same data are transferred at significantly higher compression ratios, which save time while also minimizing data mistakes that may occur at the receiver. The DNN process also includes a visible parameter for handling high data-weight situations. The visible parameter optimizes the data results, allowing simulation tools to readily observe the compressed data. A comparison case study was created for five different scenarios in order to confirm the results, and it shows that the suggested strategy is significantly more effective than existing methods in roughly 63 percent of the cases.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3