An efficient secure data compression technique based on chaos and adaptive Huffman coding

Author:

Usama Muhammad,Malluhi Qutaibah M.,Zakaria Nordin,Razzak Imran,Iqbal Waheed

Abstract

AbstractData stored in physical storage or transferred over a communication channel includes substantial redundancy. Compression techniques cut down the data redundancy to reduce space and communication time. Nevertheless, compression techniques lack proper security measures, e.g., secret key control, leaving the data susceptible to attack. Data encryption is therefore needed to achieve data security in keeping the data unreadable and unaltered through a secret key. This work concentrates on the problems of data compression and encryption collectively without negatively affecting each other. Towards this end, an efficient, secure data compression technique is introduced, which provides cryptographic capabilities for use in combination with an adaptive Huffman coding, pseudorandom keystream generator, and S-Box to achieve confusion and diffusion properties of cryptography into the compression process and overcome the performance issues. Thus, compression is carried out according to a secret key such that the output will be both encrypted and compressed in a single step. The proposed work demonstrated a congruent fit for real-time implementation, providing robust encryption quality and acceptable compression capability. Experiment results are provided to show that the proposed technique is efficient and produces similar space-saving (%) to standard techniques. Security analysis discloses that the proposed technique is susceptible to the secret key and plaintext. Moreover, the ciphertexts produced by the proposed technique successfully passed all NIST tests, which confirm that the 99% confidence level on the randomness of the ciphertext.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid approach to secure and compress data streams in cloud computing environment;Journal of King Saud University - Computer and Information Sciences;2024-03

2. Temporal-Spatial Power Spectrum and Sensitivity Measure for Visual Perception Considering Video Dynamics;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

3. TizenRT OS Based Data Compression Algorithms for IoT Devices;2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2023-11-03

4. Joint Encryption Model Based on a Randomized Autoencoder Neural Network and Coupled Chaos Mapping;Entropy;2023-08-01

5. An efficient and secure compression technique for data protection using burrows-wheeler transform algorithm;Heliyon;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3