Construal Attacks on Wireless Data Storage Applications and Unraveling Using Machine Learning Algorithm

Author:

Kshirsagar Pravin R.1ORCID,Manoharan Hariprasath2ORCID,Alterazi Hassan A.3ORCID,Alhebaishi Nawaf4ORCID,Rabie Osama Bassam J.4ORCID,Shitharth S.5ORCID

Affiliation:

1. Department of Artificial Intelligence, G. H. Raisoni College of Engineering, Nagpur, India

2. Department of Electronics and Communication Engineering, Panimalar Engineering College, Poonamallee, Chennai, India

3. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia

4. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia

5. Department of Computer Science & Engineering, Kebri Dehar University, Kebri Dehar, Ethiopia

Abstract

Cloud services are a popular concept used to describe how internet-based services are delivered and maintained. The computer technology environment is being restructured with respect to information preservation. Data protection is of critical importance when storing huge volumes of information. In today’s cyber world, an intrusion is a significant security problem. Services, information, and services are all vulnerable to attack in the cloud due to its distributed structure of the cloud. Inappropriate behavior in the connection and in the host is detected using intrusion detection systems (IDS) in the cloud. DDoS attacks are difficult to protect against since they produce massive volumes of harmful information on the network. This assault forces the cloud services to become unavailable to target consumers, which depletes computer resources and leaves the provider exposed to massive financial and reputational losses. Cyber-analyst data mining techniques may assist in intrusion detection. Machine learning techniques are used to create many strategies. Attribute selection techniques are also vital in keeping the dataset’s dimensionality low. In this study, one method is provided, and the dataset is taken from the NSL-KDD dataset. In the first strategy, a filtering method called learning vector quantization (LVQ) is used, and in the second strategy, a dimensionality-simplifying method called PCA. The selected attributes from each technique are used for categorization before being tested against a DoS attack. This recent study shows that an LVQ-based SVM performs better than the competition in detecting threats.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3