Efficient Electrochemical N-Alkylation of N-Boc-Protected 4-Aminopyridines: Towards New Biologically Active Compounds

Author:

Feroci Marta1ORCID,Chiarotto Isabella1,Forte Gianpiero1ORCID,Simonetti Giovanna2,D'Auria Felicia Diodata2ORCID,Maes Louis3,De Vita Daniela4,Scipione Luigi4,Friggeri Laura4,Di Santo Roberto4,Tortorella Silvano4

Affiliation:

1. Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Castro Laurenziano 7, 00161 Rome, Italy

2. Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

3. Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, 2610 Antwerp, Belgium

4. “Istituto Pasteur-Fondazione Cenci Bolognetti”, Department of “Chimica e Tecnologie del Farmaco”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

Abstract

The use of electrogenerated acetonitrile anion allows the alkylation of N-Boc-4-aminopyridine in very high yields, under mild conditions and without by-products. The high reactivity of this base is due to its large tetraethylammonium counterion, which leaves the acetonitrile anion “naked.” The deprotection of the obtained compounds led to high yields in N-alkylated 4-aminopyridines. Nonsymmetrically dialkylated 4-aminopyridines were obtained by subsequent reaction of monoalkylated ones with t-BuOK and alkyl halides, while symmetrically dialkylated 4-aminopyridines were obtained by direct reaction of 4-aminopyridine with an excess of t-BuOK and alkyl halides. Some mono- and dialkyl-4-aminopyridines were selected to evaluate antifungal and antiprotozoal activity; the dialkylated 4-aminopyridines 3ac, 3ae and 3ff showed antifungal towards Cryptococcus neoformans; whereas 3cc, 3ee and 3ff showed antiprotozoal activity towards Leishmania infantum and Plasmodium falciparum.

Funder

Ministry of Education, Universities and Research, Italy

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3