Affiliation:
1. School of Computer Engineering, Jimei University, Xiamen 361021, China
2. School of Science, Jimei University, Xiamen 361021, China
3. Digital Fujian Big Data Modeling and Intelligent Computing Institute, Jimei University, Xiamen 361021, China
Abstract
Today, blended learning is widely carried out in many colleges. Different online learning platforms have accumulated a large number of fine granularity records of students’ learning behavior, which provides us with an excellent opportunity to analyze students’ learning behavior. In this paper, based on the behavior log data in four consecutive years of blended learning in a college’s programming course, we propose a novel multiclassification frame to predict students’ learning outcomes. First, the data obtained from diverse platforms, i.e., MOOC, Cnblogs, Programming Teaching Assistant (PTA) system, and Rain Classroom, are integrated and preprocessed. Second, a novel error-correcting output codes (ECOC) multiclassification framework, based on genetic algorithm (GA) and ternary bitwise calculator, is designed to effectively predict the grade levels of students by optimizing the code-matrix, feature subset, and binary classifiers of ECOC. Experimental results show that the proposed algorithm in this paper significantly outperforms other alternatives in predicting students’ grades. In addition, the performance of the algorithm can be further improved by adding the grades of prerequisite courses.
Funder
Scientific Research Program of Fujian Bureau of Education, China
Subject
Computer Science Applications,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献