Receiver Jitter Tracking Characteristics in High-Speed Source Synchronous Links

Author:

Ragab Ahmed1,Liu Yang12,Hu Kangmin23,Chiang Patrick3,Palermo Samuel1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

2. Broadcom Corporation, Analog and Mixed-Signal Group, Irvine, CA 92618, USA

3. School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA

Abstract

High-speed links which employ source synchronous clocking architectures have the ability to track correlated jitter between clock and data channels up to high frequencies. However, system timing margins are degraded by channel skew between clock and data signals and high-frequency loss. This paper describes how these key channel effects impact the jitter performance and influence the clocking architecture of high-speed source synchronous links. Tradeoffs in complexity and jitter tracking performance of common per-channel de-skew circuits are discussed, along with how band-pass filtering can be leveraged to provide additional jitter filtering at the receiver. Jitter tolerance analysis for a 10 Gb/s system shows that a near all-pass delay-locked loop (DLL) and phase-interpolator- (PI-) based de-skew performs best under low skew conditions, while, at high skew, architectures which leverage band-pass clock filtering or a phase-locked loop (PLL) for increased jitter filtering are more suitable. De-skew based on injection-locked oscillators (ILOs) offer a reduced complexity design and competitive jitter tolerance over a wide skew range.

Funder

Semiconductor Research Corporation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3