Rapid Determination of the Freshness of Lotus Seeds Using Surface Desorption Atmospheric Pressure Chemical Ionization-Mass Spectrometry with Multivariate Analyses

Author:

Chi Yunyang1,Luo Liping12,Huang Xueyong1,Cui Meng1,Dai Ximo1,Hao Yingbin1,Guo Xiali1,Luo Huolin1ORCID

Affiliation:

1. College of Life Sciences, Nanchang University, Nanchang 330031, China

2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China

Abstract

In order to explore a new method to detect the freshness of lotus seeds, the lotus seeds stored for 0, 1, 2, and 3 years, respectively, were used as experimental materials and analyzed by DAPCI-MS (desorption atmospheric pressure chemical ionization-mass spectrometry). The obtained data were processed by principal component analysis (PCA) and backpropagation artificial neural networks (BP-ANNs). The result showed that DAPCI-MS could obtain abundant chemical material information from the slice surface of lotus seeds. The BP-ANNs model could be applied not only to distinguish fresh and aged lotus seeds with the testing set accuracies of 95.0% and 91.7%, respectively, but also to classify lotus seeds with different storage times with the testing set accuracies of 90.0%, 85.0%, 85.0%, and 90.0%, respectively. The paper developed a fast, convenient, and accurate method for the freshness detection of lotus seed and would provide reliable reference value for rapid authentication of food freshness by the rapid mass spectrometry technique.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3