Evaluation Model of College English Teaching Effect Based on Particle Swarm Algorithm and Support Vector Machine

Author:

Wei Chunyan1ORCID,Tsai Sang-Bing2ORCID

Affiliation:

1. School of Foreign Languages, Xuchang University, Xuchang, Henan 461000, China

2. Regional Green Economy Development Research Center, School of Business, Wuyi University, Nanping, China

Abstract

Based on the principle of particle swarm algorithm and support vector machine, this article aims to improve the classification performance of college English teaching effect and explores the best support vector machine parameter optimization algorithm to promote college English teaching for the theory and application research of data analysis. First, the advantages and disadvantages of common support vector machine parameter selection methods such as grid search algorithm, gradient descent method, and swarm intelligence algorithm are studied. Secondly, this article has a detailed analysis and comparison of various other algorithms. Finally, the study analyzed the advantages and disadvantages of the quantum particle swarm algorithm, introduced the dual-center idea into the quantum particle swarm algorithm, and proposed an improved quantum particle swarm algorithm. Through simulation experiments, it is proved that the improved quantum particle swarm algorithm is more superior in optimizing the parameters of support vector machine. In general, this paper uses the PSO algorithm to simultaneously solve the SVM feature selection and parameter optimization problems and has achieved good results. Within the scope of the literature that the author has, there is still a lack of work in this area. Compared with the existing algorithms, the algorithm proposed in this paper has stronger feature selection ability and higher efficiency.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Educational Practice Based on the Integration of Support Vector Machines and English Curricula;International Journal of Information and Communication Technology Education;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3