Abstract
AbstractAccording to statistic data, machinery faults contribute to largest proportion of High-voltage circuit breaker failures, and traditional maintenance methods exist some disadvantages for that issue. Therefore, based on the wavelet packet decomposition approach and support vector machines, a new diagnosis model is proposed for such fault diagnoses in this study. The vibration eigenvalue extraction is analyzed through wavelet packet decomposition, and a four-layer support vector machine is constituted as a fault classifier. The Gaussian radial basis function is employed as the kernel function for the classifier. The penalty parameter c and kernel parameter δ of the support vector machine are vital for the diagnostic accuracy, and these parameters must be carefully predetermined. Thus, a particle swarm optimization-support vector machine model is developed in which the optimal parameters c and δ for the support vector machine in each layer are determined by the particle swarm algorithm. The validity of this fault diagnosis model is determined with a real dataset from the operation experiment. Moreover, comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented. The results indicate that the proposed fault diagnosis model yields better accuracy and efficiency than these other models.
Funder
National Science Foundation of China
National Science and Technology project of the power grid
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献