Sedimentary Environment Analysis by Grain-Size Data Based on Mini Batch K-Means Algorithm

Author:

Su Qiao1ORCID,Zhu Yanhui2,Jia Yalin2,Li Ping1,Hu Fang23ORCID,Xu Xingyong1

Affiliation:

1. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China

2. College of Information Engineering, Hubei University of Chinese Medicine, Wuhan 430065, China

3. Department of Mathematics and Statistics, University of West Florida, Pensacola 32514, USA

Abstract

During the last several decades, researchers have made significant advances in sedimentary environment interpretation of grain-size analysis, but these improvements have often depended on the subjective experience of the researcher and were usually combined with other methods. Currently, researchers have been using a larger number of data mining and knowledge discovering methods to explore the potential relationships in sediment grain-size analysis. In this paper, we will apply bipartite graph theory to construct a Sample/Grain-Size network model and then construct a Sample network model projected from this bipartite network. Furthermore, we will use the Mini Batch K-means algorithm with the most appropriate parameters (reassignment ratio ϵ=0.025 and mini batch = 25) to cluster the sediment samples. We will use four representative evaluation indices to verify the precision of the clustering result. Simulation results demonstrate that this algorithm can divide the Sample network into three sedimentary categorical clusters: marine, fluvial, and lacustrine. According to the results of previous studies obtained from a variety of indices, the precision of experimental results about sediment grain-size category is up to 0.92254367, a fact which shows that this method of analyzing sedimentary environment by grain size is extremely effective and accurate.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3