Automated Classification of Well Test Responses in Naturally Fractured Reservoirs Using Unsupervised Machine Learning

Author:

Freites A.ORCID,Corbett P.ORCID,Rongier G.ORCID,Geiger S.ORCID

Abstract

AbstractUnderstanding the impact of fractures on fluid flow is fundamental for developing geoenergy reservoirs. Pressure transient analysis could play a key role for fracture characterization purposes if better links can be established between the pressure derivative responses (p′) and the fracture properties. However, pressure transient analysis is particularly challenging in the presence of fractures because they can manifest themselves in many different p′ curves. In this work, we aim to provide a proof-of-concept machine learning approach that allows us to effectively handle the diversity in fracture-related p′ curves by automatically classifying them and identifying the characteristic fracture patterns. We created a synthetic dataset from numerical simulation that comprised 2560 p′ curves that represent a wide range of fracture network properties. We developed an unsupervised machine learning approach that can distinguish the temporal variations in the p′ curves by combining dynamic time warping with k-medoids clustering. Our results suggest that the approach is effective at recognizing similar shapes in the p′ curves if the second pressure derivatives are used as the classification variable. Our analysis indicated that 12 clusters were appropriate to describe the full collection of p′ curves in this particular dataset. The classification exercise also allowed us to identify the key geological features that influence the p′ curves in this particular dataset, namely (1) the distance from the wellbore to the closest fracture(s), (2) the local/global fracture connectivity, and (3) the local/global fracture intensity. With additional training data to account for a broader range of fracture network properties, the proposed classification method could be expanded to other naturally fractured reservoirs and eventually serve as an interpretation framework for understanding how complex fracture network properties impact pressure transient behaviour.

Funder

Energi Simulation

Heriot-Watt University

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3