Neuroprotective Effect ofBrassica oleraceaSprouts Crude Juice in a Cellular Model of Alzheimer’s Disease

Author:

Masci Alessandra1ORCID,Mattioli Roberto2,Costantino Paolo2,Baima Simona3,Morelli Giorgio3ORCID,Punzi Pasqualina4,Giordano Cesare5,Pinto Alessandro1,Donini Lorenzo Maria1,d’Erme Maria6,Mosca Luciana6ORCID

Affiliation:

1. Department of Experimental Medicine-Medical Physiopathology, Food Science and Endocrinology Section, Sapienza University, Rome, Italy

2. Department of Biology and Biotechnology, Sapienza University, Rome, Italy

3. Food and Nutrition Research Centre, Agricultural Research Council (CRA), Rome, Italy

4. Department of Chemistry, Sapienza University, Rome, Italy

5. Institute of Biology, Molecular Medicine and Nanobiotechnologies, National Research Council (CNR), Rome, Italy

6. Department of Biochemical Sciences, Sapienza University, Rome, Italy

Abstract

β-Amyloid peptide (Aβ) aberrant production and aggregation are major factors implicated in the pathogenesis of Alzheimer’s disease (AD), causing neuronal deathviaoxidative stress. Several studies have highlighted the importance of polyphenolic antioxidant compounds in the treatment of AD, but complex food matrices, characterized by a different relative content of these phytochemicals, have been neglected. In the present study, we analyzed the protective effect on SH-SY5Y cells treated with the fragment Aβ25–35by two crude juices of broccoli sprouts containing different amounts of phenolic compounds as a result of different growth conditions. Both juices protected against Aβ-induced cytotoxicity and apoptotic cell death as evidenced by cell viability, nuclear chromatin condensation, and apoptotic body formation measurements. These effects were mediated by the modulation of the mitochondrial function and of theHSP70gene transcription and expression. Furthermore, the juices upregulated the intracellular glutathione content and mRNA levels or activity of antioxidant enzymes such as heme oxygenase-1, thioredoxin, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase 1viaactivation of NF-E2-related factor 2 (Nrf2). Although the effects of the two juices were similar, the juice enriched in phenolic compounds showed a greater efficacy in inducing the activation of the Nrf2 signalling pathway.

Funder

Ministry for the Agricultural, Food and Forestry Policies

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3