An Investigation on the Effect of Endwall Movement on the Tip Clearance Loss Using Annular Turbine Cascade

Author:

El-Batsh Hesham M.1ORCID,Bassily Hanna Magdy2

Affiliation:

1. Mechanical Engineering Department, High Institute of Technology, Benha University, Benha 13512, Egypt

2. Mechanical Power Engineering and Energy Department, Faculty of Engineering, Minia University, Minia, Egypt

Abstract

The aerodynamic losses in gas turbines are mainly caused by profile loss secondary flow, and tip leakage loss. This study focuses on tip leakage flow of high-pressure turbine stages. An annular turbine cascade was constructed with fixed blades on the casing, and the distance between blade tip and the hub was considered as tip clearance gap. The effect of endwall movement on loss mechanism was investigated by using experimental and numerical techniques. The measurements were obtained while the hub was fixed but the numerical calculations were carried out for both stationary and moving cascades. Upstream and downstream flows were measured by using a calibrated five-hole pressure probe. The steady incompressible turbulent flow was obtained by solving Reynolds averaged Navier-Stokes equations and by employing shear stress transport (SST)k-ωturbulence model. The total pressure loss coefficient obtained from the numerical technique was compared with the experimental measurements, and the comparison showed good agreement. Tip clearance vortices were observed in the tip clearance gap. It was found through this study that end-wall movement reduces tip leakage loss through the cascade.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3